Skip to content

captv89/autonomous-vessel-navigation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Autonomous Vessel Navigation

A comparative study of classical and reinforcement learning approaches to autonomous maritime navigation.

Phase 1: Classical Navigation (COMPLETE & TESTED)

Implemented:

  • A* pathfinding
  • Grid world environment
  • Static obstacles
  • Path Optimization - String pulling (Line of Sight)
  • Vessel physics (Kinematic & Nomoto models)
  • Path following (Pure Pursuit & ILOS)
  • Dynamic obstacles
  • Collision detection (CPA/TCPA)
  • Collision avoidance (COLREGs-inspired)

Phase 2: Reinforcement Learning (IN PROGRESS)

Coming next:

  • RL environment wrapper
  • DQN/PPO implementation
  • Training infrastructure
  • Performance comparison

Setup

# Install dependencies
uv sync

# Run demos
uv run python examples/navigation_with_avoidance.py

Project Structure

  • src/environment/ - Grid world and simulation environment
  • src/pathfinding/ - A* and other pathfinding algorithms
  • src/vessel/ - Vessel physics models
  • src/visualization/ - Plotting and animation tools