Skip to content

shaiss/Near-Catalyst

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NEAR Catalyst Framework - Multi-Agent Partnership Discovery System

Python 3.8+ OpenAI API NEAR Protocol Web3 License: MIT

🚀 AI-powered system for discovering hackathon co-creation partners that create "1 + 1 = 3" value propositions and unlock developer potential during NEAR hackathons and developer events.

📋 Table of Contents

✨ Features

🤖 8-Agent Multi-Agent System

  • Research Agent: Web search + NEAR catalog data extraction (OpenAI native or DDGS)
  • Deep Research Agent: o4-mini deep research (optional, ~$2/project)
  • 6x Question Agents: Parallel analysis using configurable reasoning models
  • Summary Agent: Synthesis and final recommendations

Dual Provider Support

  • OpenAI Provider: Native web search, GPT-4o + o4-mini reasoning models
  • Local Provider: LM Studio integration with DDGS web search, free inference
  • Unified API: LiteLLM abstraction enables seamless provider switching

🎯 Hackathon-Focused Analysis

  • 6 Diagnostic Questions: Gap-Filler, Proof-Points, Clear Story, Dev-Friendly, Aligned Incentives, Ecosystem Fit
  • Partnership Scoring: -6 to +6 scale with actionable recommendations
  • Time-Optimized: Built for hackathon partnership discovery (not general research)

💰 Advanced Cost Management

  • Real-time API tracking: Token usage, costs, and model performance
  • Usage analytics: Session summaries and cost optimization insights
  • Deep research controls: Cost limits, timeouts, and caching

🎨 Glass UI Dashboard

  • Modern glassmorphism design with responsive layout
  • Real-time filtering and search capabilities
  • Detailed project modals with comprehensive analysis views
  • Export functionality for partnership reports

Performance & Reliability

  • Parallel execution: 6x speed improvement with concurrent question analysis
  • Smart caching: 24-hour freshness with project-specific cache keys
  • Database persistence: SQLite with WAL mode for concurrent access
  • Graceful failure handling: Timeout protection and retry logic

🚀 Quick Start

Option 1: Docker (Recommended)

# 1. Clone repository
git clone <repository-url>
cd near-catalyst-framework

# 2. Set up environment
echo "OPENAI_API_KEY=your_api_key_here" > .env

# 3. Start with Docker Compose
docker-compose up

# 4. Open dashboard at http://localhost:5000
# 5. Run analysis: docker-compose run --rm near-catalyst-analysis

Option 2: Local Development

# 1. Clone and setup environment
git clone <repository-url>
cd near-catalyst-framework
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# 2. Install dependencies
pip install -r requirements.txt

# 3. Configure OpenAI API (get key from https://platform.openai.com/api-keys)
echo "OPENAI_API_KEY=your_api_key_here" > .env

# 4. Run analysis with OpenAI models (requires API key)
python analyze_projects_multi_agent_v2.py --limit 5

# Alternative: Use local models via LM Studio (free, requires setup)
# python analyze_projects_multi_agent_v2.py --provider local --limit 5

# 5. Start web dashboard
python server.py
# Open http://localhost:5000

🛠️ Installation

Prerequisites

  • Docker & Docker Compose (recommended) OR Python 3.8+
  • Either:
    • OpenAI API key with GPT-4.1 access (for OpenAI provider)
    • LM Studio with compatible models (for local provider - free)
  • For deep research: Access to o4-mini models (~$2/project)

Option 1: Docker Installation (Recommended)

Quick Setup

# 1. Clone repository
git clone <repository-url>
cd near-catalyst-framework

# 2. Set up environment (for OpenAI provider)
echo "OPENAI_API_KEY=sk-your-openai-api-key-here" > .env
# Skip this step if using --provider local

# 3. Start services
docker-compose up -d

# 4. Verify installation
docker-compose logs near-catalyst

Docker Commands

# Start web dashboard only
docker-compose up near-catalyst

# Run analysis (separate container)
docker-compose run --rm near-catalyst-analysis

# Run custom analysis
docker-compose run --rm near-catalyst-analysis python analyze_projects_multi_agent_v2.py --limit 3 --deep-research

# View logs
docker-compose logs -f near-catalyst

# Stop services
docker-compose down

# Rebuild after code changes
docker-compose up --build

Volume Mounts

  • ./data/app/data - Database persistence
  • ./config/app/config - Benchmark configuration
  • ./.env/app/.env - Environment variables (read-only)

Option 2: Local Python Installation

Environment Setup

  1. Create virtual environment:

    python -m venv venv
    source venv/bin/activate  # Linux/macOS
    # OR
    venv\Scripts\activate     # Windows
  2. Install dependencies:

    pip install -r requirements.txt
  3. Configure environment variables:

    # Create .env file with your OpenAI API key
    echo "OPENAI_API_KEY=sk-your-openai-api-key-here" > .env

Verify Installation

Docker Verification

# Check container health
docker-compose ps

# Test database functionality
docker-compose exec near-catalyst python server.py --check-db

# Test analysis (requires valid API key)
docker-compose run --rm near-catalyst-analysis python analyze_projects_multi_agent_v2.py --limit 1

Local Verification

# Test the system with 1 project
python analyze_projects_multi_agent_v2.py --limit 1

# Check if database was created
ls -la project_analyses_multi_agent.db

# Start dashboard to verify frontend
python server.py --check-db

🎮 Usage

Basic Analysis Commands

# Analyze 5 projects with OpenAI models (default)
python analyze_projects_multi_agent_v2.py --limit 5

# Use local LM Studio models instead of OpenAI
python analyze_projects_multi_agent_v2.py --provider local --limit 5

# High-throughput analysis with custom concurrency
python analyze_projects_multi_agent_v2.py --threads 8 --limit 50

# Force refresh all cached data
python analyze_projects_multi_agent_v2.py --force-refresh --limit 10

Deep Research (Advanced Analysis)

⚠️ Cost Warning: Deep research uses OpenAI's o4-mini model at ~$2 per project

# Option 1: Enable via command line flag (recommended for testing)
python analyze_projects_multi_agent_v2.py --deep-research --limit 1

# Option 2: Enable in config permanently
# Edit config/config.py: DEEP_RESEARCH_CONFIG['enabled'] = True
python analyze_projects_multi_agent_v2.py --limit 3

# Deep research with only general research (skip question analysis)
python analyze_projects_multi_agent_v2.py --deep-research --research-only --limit 1

# Use deep research with local models (if supported)
python analyze_projects_multi_agent_v2.py --provider local --deep-research --limit 1

Database Management

# List all analyzed projects
python analyze_projects_multi_agent_v2.py --list

# Clear specific projects
python analyze_projects_multi_agent_v2.py --clear project1 project2

# Clear all projects (with confirmation)
python analyze_projects_multi_agent_v2.py --clear all

# Clear cache and re-analyze fresh
python analyze_projects_multi_agent_v2.py --clear all --limit 5

Partial Analysis Options

# Research only (skip question analysis and summary)
python analyze_projects_multi_agent_v2.py --research-only --limit 5

# Questions only (skip summary generation)
python analyze_projects_multi_agent_v2.py --questions-only --limit 5

Benchmark Management

Getting Started with Benchmarks

Before running analysis, set up your partnership evaluation benchmarks:

# 1. Copy the example template to create your benchmark file
cp config/partnership_benchmarks.example.json config/partnership_benchmarks.json

# 2. Edit the benchmark file with your real partnership evaluations
# WARNING: Never commit real partnership data - keep it in the gitignored file
nano config/partnership_benchmarks.json

The example file (partnership_benchmarks.example.json) provides:

  • Template structure for complementary vs competitive examples
  • Scoring guidance (+4 to +6 strong, 0 to +3 mixed, <0 decline)
  • Framework principles (gap-filler signs, competitive red flags)
  • Anonymized examples you can replace with real partnership data

Format Management

The system supports both JSON and CSV formats with automatic synchronization:

# Convert JSON benchmarks to CSV for editing (creates 3 files)
python config/benchmark_converter.py json-to-csv

# Edit CSV files in Excel/Google Sheets, system auto-syncs back to JSON
# - partnership_benchmarks_examples.csv    # Partnership examples
# - partnership_benchmarks_principles.csv  # Framework principles
# - partnership_benchmarks_scoring.csv     # Scoring guidance

# Force specific format usage
python analyze_projects_multi_agent_v2.py --benchmark-format csv --limit 5
python analyze_projects_multi_agent_v2.py --benchmark-format json --limit 5

Benchmark File Structure

Your benchmark file should contain:

{
  "framework_benchmarks": {
    "complementary_examples": [
      {
        "partner": "NEAR + YourPartner",
        "score": 6,
        "type": "technology category",
        "description": "why it works well"
      }
    ],
    "competitive_examples": [
      {
        "partner": "NEAR + Competitor", 
        "score": -3,
        "type": "conflict type",
        "description": "why it's problematic"
      }
    ]
  },
  "framework_principles": {
    "complementary_signs": ["Gap filler", "Clear value story", ...],
    "competitive_red_flags": ["Direct overlap", "Either/or choice", ...]
  },
  "scoring_guidance": {
    "strong_candidate": {"range": "+4 to +6", "action": "explore MoU"},
    "mixed_fit": {"range": "0 to +3", "action": "negotiate scope"},
    "decline": {"range": "< 0", "action": "decline or redesign"}
  }
}

Complete CLI Reference

python analyze_projects_multi_agent_v2.py [OPTIONS]

Core Options:
  --provider PROVIDER    AI provider: 'openai' (default) or 'local' (LM Studio)
  --limit N              Process N projects (0 for unlimited, default: all)
  --threads N            Concurrent projects (default: 5, max: 10)
  --force-refresh        Ignore cache, refresh all data

Analysis Control:
  --research-only        Only run research agents (skip questions & summary)
  --questions-only       Only run question agents (skip summary)
  --deep-research        Enable deep research (~$2/project, overrides config)

Database Management:
  --list                 List all projects in database
  --clear [PROJECTS]     Clear projects (specific names or 'all')

Format Control:
  --benchmark-format     Force 'json' or 'csv' benchmark format

Examples:
  # Quick test with OpenAI models
  python analyze_projects_multi_agent_v2.py --limit 3 --threads 1
  
  # Use local models via LM Studio
  python analyze_projects_multi_agent_v2.py --provider local --limit 5
  
  # High-volume batch processing with OpenAI
  python analyze_projects_multi_agent_v2.py --threads 8 --limit 100
  
  # Deep research with local models
  python analyze_projects_multi_agent_v2.py --provider local --deep-research --limit 3
  
  # Database cleanup and fresh analysis
  python analyze_projects_multi_agent_v2.py --clear all --limit 10

🏗️ System Architecture

Multi-Agent Pipeline

📡 NEAR Catalog API → 🔍 Research Agent → 🔬 Deep Research (Optional) → 
🤖 6x Question Agents (Parallel) → 📊 Summary Agent → 💾 Database →
🌐 Flask API → 🎨 Glass UI Dashboard

Core Components

🤖 Analysis Agents (agents/)

🎯 6 Diagnostic Questions Framework

  1. Gap-Filler? - Strategic technology gaps NEAR lacks
  2. New Proof-Points? - Novel use cases unlocked by combination
  3. Clear Story? - Simple "Better Together" value proposition
  4. Shared Audience, Different Function? - Complementary vs competitive
  5. Low-Friction Integration? - Hackathon-ready developer experience
  6. Hands-On Support? - Mentors, bounties, technical assistance

💾 Data Layer (database/)

🎨 Glass UI Frontend (frontend/)

  • Glassmorphism design with modern translucent effects
  • Responsive modals with independent scrolling sections
  • Real-time search/filtering across all project data
  • Export controls for partnership reports

⚙️ Configuration (config/)

  • Centralized config (config.py): All system constants
  • Benchmark management: JSON/CSV auto-sync for partnership criteria
  • Provider selection: OpenAI with native web search or local models via LM Studio

Project Structure

near-catalyst-framework/
├── agents/                              # 8-agent multi-agent system
│   ├── research_agent.py               # Agent 1: General research + web search
│   ├── deep_research_agent.py          # Agent 1.5: Optional deep research (o4-mini)
│   ├── question_agent.py               # Agents 2-7: Parallel diagnostic analysis  
│   ├── summary_agent.py                # Agent 8: Final synthesis
│   └── __init__.py                     # Agent exports
├── config/                             # Configuration management
│   ├── config.py                       # Core system configuration
│   ├── benchmark_converter.py          # JSON/CSV format management
│   ├── partnership_benchmarks.json    # Partnership evaluation criteria
│   └── partnership_benchmarks_*.csv   # Auto-synced CSV files
├── database/                           # Data persistence layer
│   ├── database_manager.py             # SQLite operations (WAL mode)
│   ├── usage_tracker.py               # API cost tracking & optimization
│   └── __init__.py                     # Database exports
├── frontend/                           # Glass UI web dashboard
│   ├── index.html                      # Dashboard structure  
│   ├── styles.css                      # Glassmorphism styling
│   └── app.js                          # Interactive functionality
├── docs/                               # Documentation
│   ├── agentic-data-flow.md           # System architecture details
│   ├── partnership-benchmarks.md      # Scoring framework docs
│   └── roadmap.md                      # Development roadmap
├── analyze_projects_multi_agent_v2.py # Main orchestrator & CLI
├── server.py                           # Flask API backend
├── debug_data_flow.py                  # Database debugging utility
├── prompt.md                           # LLM system prompt framework
├── requirements.txt                    # Python dependencies
├── .env                               # Environment variables (not in repo)
└── README.md                          # This file

⚙️ Configuration

Environment Variables (.env)

# Required for OpenAI provider: OpenAI API key with GPT-4.1 access
OPENAI_API_KEY=sk-your-openai-api-key-here

# Optional: Database location (defaults to project_analyses_multi_agent.db)
DATABASE_PATH=./data/analyses.db

Local Model Setup (LM Studio)

The system supports local models via LM Studio as an alternative to OpenAI:

Prerequisites for Local Models

  • LM Studio installed and running on default port (1234)
  • Required models downloaded in LM Studio:
    • qwen2.5-72b-instruct or qwen2.5-coder-32b (research)
    • deepseek-r1-distill-qwen-32b (reasoning)

Setup Steps

  1. Install LM Studio from https://lmstudio.ai
  2. Download models via LM Studio's model manager
  3. Start LM Studio server (port 1234 by default)
  4. Use local provider:
    python analyze_projects_multi_agent_v2.py --provider local --limit 5

Model Selection Strategy

  • OpenAI Provider: Uses native web search, consistent performance, costs apply
  • Local Provider: Uses DDGS web search, free inference, requires powerful hardware

See docs/lm-studio-setup.md for detailed setup instructions.

Key Configuration Settings (config/config.py)

# Deep Research (o4-mini model, ~$2/project)
DEEP_RESEARCH_CONFIG = {
    'enabled': False,  # Set True to enable by default
    'model': 'o4-mini',        # Standard LiteLLM model name
    'priming_model': 'gpt-4.1', # Model for context priming
    'cost_per_input': 2.00
}

# Question Agent Provider-Specific Configuration  
QUESTION_AGENT_CONFIG = {
    # OpenAI Provider (with native web search)
    'openai': {
        'research_model': {
            'production': 'gpt-4o-search-preview',
            'development': 'gpt-4o-search-preview'
        },
        'reasoning_model': {
            'production': 'o4-mini',
            'development': 'o4-mini'
        }
    },
    # Local Provider (LM Studio + DDGS web search)
    'local': {
        'research_model': {
            'production': 'qwen2.5-72b-instruct',
            'development': 'qwen2.5-coder-32b'
        },
        'reasoning_model': {
            'production': 'deepseek-r1-distill-qwen-32b',
            'development': 'qwen2.5-coder-32b'
        }
    }
}

# Batch Processing
BATCH_PROCESSING_CONFIG = {
    'default_batch_size': 5,  # Concurrent projects
    'max_batch_size': 10      # API rate limit protection
}

🐳 Docker Usage

Container Architecture

The application provides two Docker containers:

  • near-catalyst: Web dashboard service (always running)
  • near-catalyst-analysis: Analysis runner service (on-demand)

Basic Docker Commands

# Start web dashboard
docker-compose up near-catalyst

# Run analysis in separate container
docker-compose run --rm near-catalyst-analysis

# Both services with auto-restart
docker-compose up -d

# View real-time logs
docker-compose logs -f near-catalyst

# Stop all services
docker-compose down

Running Analysis with Docker

Option 1: Docker Compose Analysis Service (Recommended)

# Run analysis with default settings (5 projects)
docker-compose run --rm near-catalyst-analysis

# Custom analysis parameters
docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --limit 10 --threads 3

# Deep research analysis (~$2 per project)
docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --deep-research --limit 3

# Force refresh cached data
docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --force-refresh --limit 5

# Research only (skip question analysis)
docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --research-only --limit 10

# Database management
docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --list

docker-compose run --rm near-catalyst-analysis \
  python analyze_projects_multi_agent_v2.py --clear all

Option 2: Execute in Running Web Container

# If web service is already running
docker-compose exec near-catalyst python analyze_projects_multi_agent_v2.py --limit 5

# Interactive shell access
docker-compose exec near-catalyst bash

Option 3: Direct Docker Run

# One-off analysis
docker run --rm \
  --env-file .env \
  -v "${PWD}/data:/app/data" \
  -v "${PWD}/config:/app/config" \
  near-catalyst-framework python analyze_projects_multi_agent_v2.py --limit 5

# Background analysis job
docker run -d \
  --name analysis-job \
  --env-file .env \
  -v "${PWD}/data:/app/data" \
  -v "${PWD}/config:/app/config" \
  near-catalyst-framework python analyze_projects_multi_agent_v2.py --limit 20

# Check background job
docker logs -f analysis-job
docker wait analysis-job  # Wait for completion
docker rm analysis-job    # Clean up

Development Workflow

# Build and test locally
docker build -t near-catalyst-framework .

# Run with custom command
docker run --rm -p 5001:5000 \
  -e OPENAI_API_KEY=your_key \
  -v "${PWD}/data:/app/data" \
  near-catalyst-framework python analyze_projects_multi_agent_v2.py --limit 1

# Debug container
docker run -it --rm near-catalyst-framework bash

# Rebuild after code changes
docker-compose up --build

Production Deployment

# Production with custom host/port
docker run -d \
  --name near-catalyst-prod \
  -p 80:5000 \
  -e OPENAI_API_KEY=your_production_key \
  -v /opt/near-catalyst/data:/app/data \
  -v /opt/near-catalyst/config:/app/config \
  --restart unless-stopped \
  near-catalyst-framework

# Health check
curl http://localhost/api/health

# View production logs
docker logs -f near-catalyst-prod

Docker Environment Variables

Variable Description Default
OPENAI_API_KEY OpenAI API key (required) -
DATABASE_PATH Database file location /app/data/project_analyses_multi_agent.db
FLASK_HOST Flask server host 0.0.0.0
FLASK_PORT Flask server port 5000
FLASK_DEBUG Enable debug mode false

Data Persistence

All analysis data persists in Docker volumes:

# Data directory structure
./data/
├── project_analyses_multi_agent.db    # SQLite database
└── multi_agent_analyses_*.json        # Export files

# Configuration directory  
./config/
├── partnership_benchmarks.json        # Your benchmark data
├── partnership_benchmarks.example.json # Template
└── *.csv                              # Auto-generated CSV files

Troubleshooting Docker

# Container won't start
docker-compose logs near-catalyst

# Database permissions
docker-compose exec near-catalyst ls -la /app/data/

# Reset everything
docker-compose down -v
docker-compose up --build

# Check container health
docker-compose ps
docker inspect near-catalyst-framework

# Performance issues
docker stats near-catalyst-framework

💰 API Cost Management

Real-Time Usage Tracking

The system tracks all OpenAI API calls with detailed cost analysis:

# View usage statistics during analysis
python analyze_projects_multi_agent_v2.py --limit 5
# Output shows: tokens used, costs, model performance

# Access detailed usage data
python -c "
from database.usage_tracker import APIUsageTracker
tracker = APIUsageTracker()
tracker.print_session_summary()
"

Cost Optimization Features

  • Input caching: Reduces duplicate API calls
  • Context truncation: Optimizes token usage for reasoning models
  • Model selection: Provider-specific models optimized for each task
  • Timeout controls: Prevents runaway costs
  • Deep research limits: 50 tool calls maximum per analysis

Budget Management

# Estimated costs (as of January 2025):
# - Standard analysis (GPT-4.1): ~$0.05 per project
# - With reasoning models (o4-mini): ~$0.20 per project  
# - Deep research (o4-mini): ~$2.00 per project
# - Local models: Free (requires LM Studio setup)

# Monitor costs in dashboard:
# - Real-time token counters
# - Cost estimates vs actual
# - Model performance metrics

🎨 Web Dashboard

Features

  • 🔍 Real-time search: Filter by name, score, technology, recommendation
  • 📊 Multiple views: Card grid and detailed table layouts
  • 📋 Project details: Comprehensive modal with research, analysis, and sources
  • 📈 Score visualization: Color-coded partnership recommendations
  • 💾 Export controls: Download filtered results as JSON
  • 💰 Cost tracking: API usage and performance metrics

Score System & Recommendations

Score Range Color Recommendation Action
+4 to +6 🟢 Green Strong candidate Explore MoU/co-marketing
0 to +3 🟡 Yellow Mixed fit Negotiate scope carefully
-1 to -6 🔴 Red Likely misaligned Proceed with caution

Dashboard Access

# Start server
python server.py

# Custom host/port
python server.py --host 0.0.0.0 --port 8080

# Check database before starting
python server.py --check-db

# Debug mode
python server.py --debug

🛠️ Development

Adding New Diagnostic Questions

  1. Update configuration:

    # In config/config.py, add to DIAGNOSTIC_QUESTIONS:
    {
        "id": 7,
        "key": "new_question",
        "question": "Your Question?",
        "description": "Detailed description...",
        "search_focus": "keywords for web search..."
    }
  2. Update frontend scoring (if needed):

    // In frontend/app.js, update score calculation
  3. Test with sample project:

    python analyze_projects_multi_agent_v2.py --limit 1 --force-refresh

Adding New Agents

Follow the established agent pattern:

# agents/your_new_agent.py
class YourNewAgent:
    def __init__(self, client, db_manager=None, usage_tracker=None):
        self.client = client
        self.db_manager = db_manager  
        self.usage_tracker = usage_tracker
    
    def analyze(self, project_name, context):
        # Your agent logic here
        pass

Database Schema

The system uses SQLite with these main tables:

  • project_research: General research data and sources
  • question_analyses: Question-specific analysis and scores
  • final_summaries: Partnership recommendations and totals
  • api_usage_tracking: Cost and performance monitoring

Testing

# Test core functionality
python analyze_projects_multi_agent_v2.py --limit 1

# Test database operations
python debug_data_flow.py --summary

# Test frontend
python server.py --check-db

# Test deep research (costs money!)
python analyze_projects_multi_agent_v2.py --deep-research --limit 1

🔍 Troubleshooting

Common Issues

OpenAI API Errors

# Check API key
echo $OPENAI_API_KEY  # Should show your key

# Test API access
python -c "
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
    model='gpt-4.1',
    messages=[{'role': 'user', 'content': 'test'}]
)
print('API works!')
"

Database Issues

# Check database exists and has data
python server.py --check-db

# Debug database problems
python debug_data_flow.py --summary

# Clear corrupted data
python analyze_projects_multi_agent_v2.py --clear all

Performance Issues

# Reduce concurrency
python analyze_projects_multi_agent_v2.py --threads 1 --limit 5

# Disable deep research
# Edit config/config.py: DEEP_RESEARCH_CONFIG['enabled'] = False

# Clear old cache
python analyze_projects_multi_agent_v2.py --force-refresh --limit 5

Error Codes

Error Cause Solution
OPENAI_API_KEY not found Missing .env file Create .env with API key
Database connection error File permissions Check SQLite file permissions
API rate limit exceeded Too many concurrent requests Reduce --threads
Deep research timeout Model taking too long Increase timeout in config

🤝 Contributing

Development Setup

  1. Fork the repository
  2. Clone your fork:
    git clone https://github.com/YOUR_USERNAME/near-catalyst-framework.git
    cd near-catalyst-framework
  3. Create development environment:
    python -m venv venv
    source venv/bin/activate
    pip install -r requirements.txt
  4. Set up pre-commit hooks (if available):
    pip install pre-commit
    pre-commit install

Contribution Guidelines

  • Focus: Improvements to hackathon partnership discovery
  • Code style: Follow existing patterns, use type hints
  • Testing: Test with --limit 1 before submitting PRs
  • Documentation: Update README for new features
  • Cost awareness: Consider API costs in new features

Reporting Issues

Please include:

  • Python version and OS
  • Full error message
  • Steps to reproduce
  • Expected vs actual behavior
  • Relevant log output

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🚀 About NEAR Protocol

Built for NEAR Protocol hackathon catalyst discovery. NEAR is a carbon-neutral, scalable blockchain platform designed to enable the next generation of decentralized applications.


🎯 Mission: Identifying technical collaborators that create exponential value for NEAR developers during hackathons and co-creation events.

About

NEAR Catalyst - Python toolkit for accelerating NEAR Protocol development and testing

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •