Follow these steps to install and verify FastSAE.
# 1) Create and activate a fresh environment
conda create -n fastsae python=3.12 -y
conda activate fastsae
# 2) Install project dependencies
pip install -r requirements.txt
# 3) Install PyTorch matching your system (CUDA/CPU)
# See official instructions at `https://pytorch.org/get-started/locally/`
# (If you already have a working torch install, you can skip this.)
# 4) Install FastSAE in editable mode
pip install -e .
# 5) (Optional) Dev tools
pip install -U pre-commit ruff
pre-commit installCreate a .env file in the repo root to configure paths and runtime behavior.
Or use the provided example to create your .env:
cp env.example .envQuick checks:
# Verify install and version
python -c "import fastsae, torch; print('fastsae', fastsae.__version__, '| cuda:', torch.cuda.is_available())"👉 Follow examples/reproduce_patchsae/tutorial.ipynb.
This shows how to use FastSAE package by reproducing PatchSAE paper.
If you find our code or models useful in your work, please cite our paper:
@inproceedings{
lim2025patchsae,
title={Sparse autoencoders reveal selective remapping of visual concepts during adaptation},
author={Hyesu Lim and Jinho Choi and Jaegul Choo and Steffen Schneider},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=imT03YXlG2}
}