If you find any of these useful please cite our article (see: reference.bib)
uv sync
uv pip install -e .
uv run scripts/dataset/prepare_data.py
uv run scrpits/dataset/make_split.py
Under scripts directory:
experiments/- scripts for running experimentssynthetic/- synthetic dataset testsclinical/- clinical dataset testsablation/- ablation testsother/test_synthetic_motion_right.py- add simulated motion to synthetic dataset
demos/- scripts for qualitative evaluationsynthetic_visualizer.py- synthetic data visualizer (see --help)clinical_visualizer.py- clinical data visualizer (see --help)
dataset/- dataset preparationimage2cas.sh- extraction of ImageCASprepare_data.py- simulates the image acquisition using cone beam geometry, generates synthetic datasetmake_split.py- splits the above dataset to train and valitation splitsmake_pilot.py- create a validation dataset subset for pilot study
training/- scripts for training modelstrain_diffusion_right.py- train diffusion model for right arteriestrain_diffusion_left.py- train diffusion model for left arteriestrain_gan_right.py- train gan model for right arteries (baseline)train_gan_left.py- train gan model for left arteries (baseline)train_unet3d_right.py- train unet for right arteries (baseline)train_unet3d_left.py- train unet for left arteries
Under notebooks directory:
synthetic_results.ipynb(3.1. State-of-the-art)motion.ipynb(3.2. Dataset domain gap)clinical_results.ipynb(3.3. Clinical feasibility)ablation.ipynb(3.4. Ablation study)clinical_qualitative.ipynb(3.5. Qualitative analysis)
Are available at Zenodo under 17413997
CSV's with our measurements are also at Zenodo under 17413997





