Skip to content

apertis-ai/python-sdk

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Apertis Python SDK

PyPI version Python Versions License

Official Python SDK for the Apertis AI API.

Installation

pip install apertis

Quick Start

from apertis import Apertis

client = Apertis(api_key="your-api-key")
# Or set APERTIS_API_KEY environment variable

response = client.chat.completions.create(
    model="gpt-5.2",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Hello!"}
    ]
)

print(response.choices[0].message.content)

Features

  • Sync and Async Support: Both synchronous and asynchronous clients
  • Streaming: Real-time streaming for chat completions
  • Tool Calling: Function/tool calling support
  • Embeddings: Text embedding generation
  • Vision/Image: Analyze images with multimodal models
  • Audio I/O: Audio input and output support
  • Video: Video content analysis
  • Web Search: Real-time web search integration
  • Reasoning Mode: Chain-of-thought reasoning support
  • Extended Thinking: Deep thinking for complex problems
  • Messages API: Anthropic-native message format
  • Responses API: OpenAI Responses API format
  • Rerank API: Document reranking for RAG
  • Models API: List and retrieve available models
  • Type Hints: Full type annotations for IDE support
  • Automatic Retries: Built-in retry logic for transient errors

Usage

Chat Completions

from apertis import Apertis

client = Apertis()

response = client.chat.completions.create(
    model="gpt-5.2",
    messages=[{"role": "user", "content": "What is the capital of France?"}],
    temperature=0.7,
    max_tokens=100,
)

print(response.choices[0].message.content)
print(f"Tokens used: {response.usage.total_tokens}")

Streaming

stream = client.chat.completions.create(
    model="gpt-5.2",
    messages=[{"role": "user", "content": "Tell me a story"}],
    stream=True,
)

for chunk in stream:
    if chunk.choices[0].delta.content:
        print(chunk.choices[0].delta.content, end="", flush=True)

Vision / Image Analysis

Analyze images using multimodal models with the convenience method:

# Using image URL
response = client.chat.completions.create_with_image(
    model="gpt-4o",
    prompt="What is in this image?",
    image="https://example.com/photo.jpg",
)
print(response.choices[0].message.content)

# Using local file (automatically base64 encoded)
response = client.chat.completions.create_with_image(
    model="gpt-4o",
    prompt="Describe this image",
    image="/path/to/local/image.png",
)

# Multiple images
response = client.chat.completions.create_with_image(
    model="gpt-4o",
    prompt="Compare these images",
    image=["https://example.com/img1.jpg", "https://example.com/img2.jpg"],
    system="Be detailed in your comparison.",
)

Or use the standard API format:

response = client.chat.completions.create(
    model="gpt-4o",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "What's in this image?"},
            {"type": "image_url", "image_url": {"url": "https://example.com/cat.jpg"}}
        ]
    }]
)

Audio Input/Output

# Audio input
response = client.chat.completions.create(
    model="gpt-4o-audio-preview",
    messages=[{
        "role": "user",
        "content": [
            {"type": "text", "text": "What does this audio say?"},
            {"type": "input_audio", "input_audio": {"data": "base64_audio_data", "format": "wav"}}
        ]
    }]
)

# Audio output
response = client.chat.completions.create(
    model="gpt-4o-audio-preview",
    messages=[{"role": "user", "content": "Say hello in a friendly voice"}],
    modalities=["text", "audio"],
    audio={"voice": "alloy", "format": "wav"},
)
print(response.choices[0].message.audio.transcript)

Web Search

Enable real-time web search for up-to-date information:

# Using convenience method
response = client.chat.completions.create_with_web_search(
    prompt="What are the latest news about AI?",
    context_size="high",
    country="US",
)

# Check citations
for annotation in response.choices[0].message.annotations or []:
    print(f"Source: {annotation.url}")

# Using standard API
response = client.chat.completions.create(
    model="gpt-5-search-api",
    messages=[{"role": "user", "content": "Latest Python releases?"}],
    web_search_options={
        "search_context_size": "medium",
        "filters": ["python.org", "github.com"],
    },
)

Reasoning Mode

Enable chain-of-thought reasoning for complex problems:

response = client.chat.completions.create(
    model="glm-4.7",
    messages=[{"role": "user", "content": "How many r's are in strawberry?"}],
    reasoning={"enabled": True, "effort": "high"},
)

# Or use shorthand
response = client.chat.completions.create(
    model="glm-4.7",
    messages=[{"role": "user", "content": "Solve this math problem..."}],
    reasoning_effort="high",
)

Extended Thinking (Gemini)

Use extended thinking for deep analysis:

response = client.chat.completions.create(
    model="gemini-3-pro-preview",
    messages=[{"role": "user", "content": "Analyze this complex problem..."}],
    thinking={"type": "enabled"},
)

# With custom thinking budget
response = client.chat.completions.create(
    model="gemini-3-pro-preview",
    messages=[{"role": "user", "content": "Deep analysis needed..."}],
    extra_body={
        "google": {"thinking_config": {"thinking_budget": 10240}}
    },
)

Async Usage

import asyncio
from apertis import AsyncApertis

async def main():
    client = AsyncApertis()

    response = await client.chat.completions.create(
        model="gpt-5.2",
        messages=[{"role": "user", "content": "Hello!"}]
    )
    print(response.choices[0].message.content)

    await client.close()

asyncio.run(main())

Async Streaming

async def stream_example():
    client = AsyncApertis()

    stream = await client.chat.completions.create(
        model="gpt-5.2",
        messages=[{"role": "user", "content": "Tell me a joke"}],
        stream=True,
    )

    async for chunk in stream:
        if chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end="", flush=True)

    await client.close()

Tool Calling

response = client.chat.completions.create(
    model="gpt-5.2",
    messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],
    tools=[{
        "type": "function",
        "function": {
            "name": "get_weather",
            "description": "Get the current weather for a location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city name"
                    }
                },
                "required": ["location"]
            }
        }
    }],
    tool_choice="auto",
)

if response.choices[0].message.tool_calls:
    for tool_call in response.choices[0].message.tool_calls:
        print(f"Function: {tool_call.function.name}")
        print(f"Arguments: {tool_call.function.arguments}")

Embeddings

response = client.embeddings.create(
    model="text-embedding-3-small",
    input="Hello, world!",
)

embedding = response.data[0].embedding
print(f"Embedding dimension: {len(embedding)}")

Batch Embeddings

response = client.embeddings.create(
    model="text-embedding-3-small",
    input=["Hello", "World", "How are you?"],
)

for item in response.data:
    print(f"Index {item.index}: {len(item.embedding)} dimensions")

Models API

List and retrieve available models:

# List all models
models = client.models.list()
for model in models.data:
    print(f"{model.id} - owned by {model.owned_by}")

# Retrieve specific model
model = client.models.retrieve("gpt-5.2")
print(f"Model: {model.id}, Created: {model.created}")

Messages API (Anthropic Format)

Use Anthropic-native message format:

message = client.messages.create(
    model="claude-sonnet-4.5",
    messages=[{"role": "user", "content": "Hello, Claude!"}],
    max_tokens=1024,
    system="You are a helpful assistant.",
)

print(message.content[0].text)
print(f"Stop reason: {message.stop_reason}")

With tool use:

message = client.messages.create(
    model="claude-sonnet-4.5",
    messages=[{"role": "user", "content": "What's the weather in Paris?"}],
    max_tokens=1024,
    tools=[{
        "name": "get_weather",
        "description": "Get weather for a location",
        "input_schema": {
            "type": "object",
            "properties": {"location": {"type": "string"}},
            "required": ["location"]
        }
    }],
)

if message.stop_reason == "tool_use":
    for block in message.content:
        if block.type == "tool_use":
            print(f"Tool: {block.name}, Input: {block.input}")

Responses API

Use OpenAI Responses API format for advanced use cases:

response = client.responses.create(
    model="gpt-5-pro",
    input="Write a haiku about programming",
)

print(response.output[0].content[0].text)

# With reasoning
response = client.responses.create(
    model="o1-pro",
    input="Solve this complex problem...",
    reasoning={"effort": "high"},
)

Rerank API

Rerank documents for RAG applications:

results = client.rerank.create(
    model="BAAI/bge-reranker-v2-m3",
    query="What is machine learning?",
    documents=[
        "Machine learning is a subset of AI.",
        "The weather is nice today.",
        "Deep learning uses neural networks.",
    ],
    top_n=2,
)

for result in results.results:
    print(f"Index {result.index}: Score {result.relevance_score}")

# With document text in results
results = client.rerank.create(
    model="BAAI/bge-reranker-v2-m3",
    query="Python programming",
    documents=["Python is great", "Java is popular"],
    return_documents=True,
)

for result in results.results:
    print(f"{result.document}: {result.relevance_score}")

Error Handling

from apertis import (
    Apertis,
    ApertisError,
    APIError,
    AuthenticationError,
    RateLimitError,
    NotFoundError,
)

client = Apertis()

try:
    response = client.chat.completions.create(
        model="gpt-5.2",
        messages=[{"role": "user", "content": "Hello!"}]
    )
except AuthenticationError as e:
    print(f"Invalid API key: {e.message}")
except RateLimitError as e:
    print(f"Rate limited. Status: {e.status_code}")
except NotFoundError as e:
    print(f"Resource not found: {e.message}")
except APIError as e:
    print(f"API error {e.status_code}: {e.message}")
except ApertisError as e:
    print(f"Error: {e.message}")

Configuration

client = Apertis(
    api_key="your-api-key",           # Or use APERTIS_API_KEY env var
    base_url="https://api.apertis.ai/v1",  # Custom base URL
    timeout=60.0,                      # Request timeout in seconds
    max_retries=2,                     # Number of retries for failed requests
    default_headers={"X-Custom": "value"},  # Additional headers
)

Context Manager

with Apertis() as client:
    response = client.chat.completions.create(
        model="gpt-5.2",
        messages=[{"role": "user", "content": "Hello!"}]
    )
# Client is automatically closed

# Async version
async with AsyncApertis() as client:
    response = await client.chat.completions.create(...)

Available Models

Chat Models

  • gpt-5.2, gpt-5.2-codex, gpt-5.1, gpt-5-pro
  • gpt-4o, gpt-4o-audio-preview
  • claude-opus-4-5-20251101, claude-sonnet-4.5, claude-haiku-4.5
  • gemini-3-pro-preview, gemini-3-flash-preview, gemini-2.5-flash-preview
  • glm-4.7, glm-4.6v (vision)

Reasoning Models

  • o1-pro, glm-4.7 (with reasoning enabled)

Search Models

  • gpt-5-search-api

Embedding Models

  • text-embedding-3-small, text-embedding-3-large, text-embedding-ada-002

Rerank Models

  • BAAI/bge-reranker-v2-m3
  • Qwen/Qwen3-Reranker-0.6B, Qwen/Qwen3-Reranker-4B, Qwen/Qwen3-Reranker-8B

Requirements

  • Python 3.9+
  • httpx
  • pydantic

Changelog

v0.2.0

  • Added Vision/Image support with create_with_image() convenience method
  • Added Audio input/output support
  • Added Video content support
  • Added Web Search with create_with_web_search() convenience method
  • Added Reasoning Mode support
  • Added Extended Thinking (Gemini) support
  • Added Models API (client.models.list(), client.models.retrieve())
  • Added Responses API (client.responses.create())
  • Added Messages API (client.messages.create()) for Anthropic format
  • Added Rerank API (client.rerank.create())
  • Added helper utilities for base64 encoding

v0.1.1

  • Fixed API response compatibility issues

v0.1.0

  • Initial release with Chat Completions, Streaming, Tool Calling, and Embeddings

License

Apache 2.0 - see LICENSE for details.

About

Python SDK for Apertis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages