Skip to content

Gaebobman/Edge-Computing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Edge-Computing

This repository contains the assignments and projects for the course Advanced Edge Computing (ECE7104) at Inha University.


System Diagram

Industrial Rotating Equipment Anomaly Vibration Detection System. This system uses vibration data from operational rotating machinery to identify equipment failure causes. It classifies the data into three categories: two anomalies and one normal condition.

  • Imbalance: Uneven mass distribution in the shaft.
  • Misalignment: Misalignment of the shaft.
  • Normal: Normal operating condition.

Bluetooth communication enables real-time monitoring and visualization of the equipment's operational status.

Generate/Collect Data

We use the Machine Fault Simulator to generate vibrations by rotating a motor. The vibrations are captured using the Arduino Nano 33 BLE Sense equipped with a built-in IMU sensor.

During training, we transmit the collected data to the Edge Impulse project space via the Edge Impulse SDK.

Model Training and Export

Using Edge Impulse, we manage the collection and preprocessing of data for training. Post-training, the model is exported as an Arduino library for deployment.

Model Integration into Application

With the model exported as a library, we develop an application with Bluetooth functionality. The application is then built, deployed, and uploaded to the target device for seamless integration.

Real-Time Alarm/Monitor

Devices equipped with Bluetooth (We use Android Smartphone) receive and visualize the model's inference results in real-time, enabling immediate monitoring and alerting.

About

Edge-Computing project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •