Skip to content

加载UltraChat65B进行微调的问题 #28

@jinmin527

Description

@jinmin527

def get_model_tokenizer(args):
model = LlamaForCausalLM.from_pretrained(args.model_name_or_path)
tokenizer = LlamaTokenizer.from_pretrained(args.model_name_or_path)
tokenizer.add_special_tokens({'pad_token': ""})
model.resize_token_embeddings(len(tokenizer))
model = bmt.BMTrainModelWrapper(model)
return model, tokenizer

假设在单机8卡服务器上,加载UltraChat65B的模型进行微调,会不会存在OOM的问题?每个卡都会执行model = LlamaForCausalLM.from_pretrained(args.model_name_or_path)加载一份模型,哪怕存CPU内存,65B大概需要130G的内存,8卡差不多需要1T的内存,而服务器总内存也差不多1T。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions