|
| 1 | +```java |
| 2 | +import java.util.*; |
| 3 | + |
| 4 | +class Solution { |
| 5 | + static class Edge{ |
| 6 | + int to,cost; |
| 7 | + Edge(int to, int cost){ |
| 8 | + this.to = to; |
| 9 | + this.cost = cost; |
| 10 | + } |
| 11 | + } |
| 12 | + static List<Edge>[] adjList; |
| 13 | + static int[] distA; |
| 14 | + static int[] distB; |
| 15 | + static int[] distS; |
| 16 | + public int solution(int n, int s, int a, int b, int[][] fares) { |
| 17 | + int answer = 0; |
| 18 | + adjList = new List[n+1]; |
| 19 | + for(int i = 1; i<=n; i++){ |
| 20 | + adjList[i] = new ArrayList<>(); |
| 21 | + } |
| 22 | + |
| 23 | + for(int[] fare : fares){ |
| 24 | + adjList[fare[0]].add(new Edge(fare[1],fare[2])); |
| 25 | + adjList[fare[1]].add(new Edge(fare[0],fare[2])); |
| 26 | + } |
| 27 | + |
| 28 | + distA = new int[n+1]; |
| 29 | + distB = new int[n+1]; |
| 30 | + distS = new int[n+1]; |
| 31 | + dijkstra(a,distA); |
| 32 | + dijkstra(b,distB); |
| 33 | + dijkstra(s,distS); |
| 34 | + |
| 35 | + answer = distS[a] + distS[b]; |
| 36 | + for(int i=1; i<=n; i++){ |
| 37 | + answer = Math.min(answer, distS[i] + distA[i] + distB[i]); |
| 38 | + } |
| 39 | + return answer; |
| 40 | + } |
| 41 | + public void dijkstra(int start, int[] dist){ |
| 42 | + PriorityQueue<Edge> pq = new PriorityQueue<>((a,b) -> Integer.compare(a.cost,b.cost)); |
| 43 | + Arrays.fill(dist, Integer.MAX_VALUE); |
| 44 | + pq.offer(new Edge(start,0)); |
| 45 | + dist[start] = 0; |
| 46 | + |
| 47 | + while(!pq.isEmpty()){ |
| 48 | + Edge cur = pq.poll(); |
| 49 | + |
| 50 | + if(dist[cur.to] < cur.cost) continue; |
| 51 | + |
| 52 | + for(Edge next : adjList[cur.to]){ |
| 53 | + int newDist = cur.cost + next.cost; |
| 54 | + if(newDist < dist[next.to]){ |
| 55 | + dist[next.to] = newDist; |
| 56 | + pq.offer(new Edge(next.to,newDist)); |
| 57 | + } |
| 58 | + } |
| 59 | + } |
| 60 | + } |
| 61 | +} |
| 62 | +``` |
0 commit comments